- STURM (C. F.)
- STURM (C. F.)STURM CHARLES FRANÇOIS (1803-1855)Après avoir été étudiant à l’université de Genève (sa ville natale), Sturm se rend, pour être précepteur dans la famille Broglie, à Paris, où il fréquente les plus grands savants de l’époque et où il se fixe définitivement à partir de 1825.Avec son ami Colladon, il détermine en 1826 la vitesse de propagation du son dans l’eau, ce qui lui vaut, l’année suivante, le grand prix de mathématiques proposé pour le meilleur mémoire sur la compressibilité des liquides. En 1829, il énonce le célèbre théorème qui porte son nom, essentiel pour l’étude des propriétés des racines d’une équation algébrique et qui précise le nombre de racines réelles d’une équation numérique comprises entre deux limites données. Il publie la démonstration de ce théorème en 1835. À partir de 1830, en liaison avec son ami Liouville, il aborde le problème de la théorie générale des oscillations et étudie des équations différentielles du second ordre (problème de Sturm-Liouville) dans plusieurs articles, dont Sur les équations différentielles linéaires du second ordre (1836) et Sur une classe d’équations à différences partielles (1836). Les méthodes employées seront à l’origine de nombreux travaux et découvertes mathématiques.Il est élu en 1836 à l’Académie des sciences et travaille à l’École polytechnique. Succédant à Poisson, il enseigne, à partir de 1840, à la faculté des sciences de Paris (chaire de mécanique). Ses Cours d’analyse de l’École polytechnique (1857-1863) et ses Cours de mécanique de l’École polytechnique (1861) seront publiés après sa mort.
Encyclopédie Universelle. 2012.